高温合金价格走势_吉林高温合金价格多少
1.CBN刀具和PCD刀具的区别?
2. 非金属矿产的综合开发利用
3.数控车车刀,车什么材料用什么材料的车刀 越具体越好
4.铝热法详细资料大全
CBN刀具和PCD刀具的区别?
性能不同。CBN主要加工黑色高硬度金属,比如焠硬刚和铸钢(铁),可以耐高温(1000度以上),硬度始终在8000HV,是提高生产效率和加工难加工材料的较好刀具材料。
PCD主要是加工有色金属等非黑色金属的,能够刃磨出很锋利的刃口,得到较好的加工表面,一般可以达到0.2的光洁度。
CBN刀具的主要加工对象是铸铁和淬火钢。应用行业也主要在汽车发动机和轴承行业。
CBN刀具相比PCD刀具,比较容易加工,而且,随着汽车行业节能的推广,汽车发动机用铝合金基体的车也越来越多,所以,CBN在汽车发动机铣削方面被PCD刀片侵占了不少。
当然,随着CBN刀具成本的下降,在汽车刹车盘领域,CBN车刀片也取代了传统硬质合金车刀片的份额。应该来说,随着CBN材料牌号越来越多,这传统硬材料车削和磨削领域,CBN刀具的份额还会保持上升的趋势。
PCD刀具就是聚晶金刚石刀具,PCBN刀具就是聚晶立方氮化硼刀具,都是人工合成的聚晶产品。
PCD刀具主要用于有色金属及其合金、复合材料、人造板材、石墨及碳纤维、非金属材料等难加工材料的加工。PCBN刀具主要用于黑色金属例如铁、钢、铸铁、淬火钢等效果好。
非金属矿产的综合开发利用
一、矿产综合开发利用是我国矿业的重要政策
1.矿产综合利用的含义及重要作用
矿产综合利用主要是指在矿产开发过程中对共生、伴生矿产进行综合勘查、开发和利用,对以矿产为原料、燃料的工业企业排放的废渣、废液、废气及生产过程中的水、气进行综合利用。
矿产综合利用是合理开发、保护人类环境的有效手段。综合利用共生伴生矿产中有用的组分,可使一矿变多矿,小矿变大矿。以此扩大了、增加了产量。而且综合利用对矿山建设来说,减少了土地、设备、电、路和其他设施的重复建设,节约投资。由于综合利用了矿产,增加了产品数量,生产减少能耗,降低成本。充分利用三废、变废为宝,不仅可以开发新产品,也可保护环境,减轻污染。
2.我国矿产综合利用的方针
我国开展矿产综合利用的方针是:充分调动地区、部门和企业的积极性,把开发、消费与综合利用结合起来,把综合利用与企业技术改造和治理污染结合起来,变废为宝,化害为利,走出一条自我积累,自我发展,国家予以扶持的综合利用的新路子。
3.我国矿产综合利用存在的问题
(1)综合利用率不高,总体上低于30%;工业固体废料综合利用率也只有25%左右。据对1845个重要矿山调查统计,综合利用有用组分70%以上的矿山仅占2%,综合利用有用组分50%的矿山不到15%,综合利用有用组分低于25%的矿山占75%,在246个大中型矿山中,有32%的矿山未综合利用有用组分。
(2)综合利用技术尚未完全过关,存在一些尚未解决的问题,因此致使不少矿产未能利用,或者即使综合利用了回收率也很低。
(3)综合利用产品的科技含量附加值较低,有相当部分企业和矿产综合利用项目尚属低层次的原料生产及粗加工利用,产品档次较低,市场销路有限,经济效益不高。
二、河南省非金属矿产的综合利用
1.河南省非金属矿产开发的基本状况
在河南省已发现的80余种非金属矿产中水泥灰岩、耐火粘土(包括作为耐火材料用的铝土矿、高铝粘土)、建筑饰面用花岗石、大理石、砖瓦粘土、建筑用石材等开发比较广泛。河南省开发利用的非金属矿种还有珍珠岩、膨润土、沸石、蓝晶石、红柱石、夕线石、高岭土、石墨、萤石、天然碱、盐岩、石膏、硫铁矿、重晶石、白云岩、滑石、玉石、海泡石、硅石、钾长石、麦饭石、陶瓷粘土等,随着我国加大基础设施投资力度,高速公路所需玄武岩、铁路道渣用石料也得到了开发,近年新发现的矿种如伊利石、霞石正长岩、白云质凹凸棒石也在研究开发利用,金红石等矿种选矿工艺成熟后也会很快得到开发利用。
2.河南省非金属矿产综合利用存在的问题
(1)河南省非金属矿产开发主要是乡镇企业,多数规模小,开发利用技术落后,近年来虽然有较大规模的企业引进的一些国外技术和设备也多用以深加工工业。因此,多数矿山和加工企业主要生产原矿和初级产品,优等产品少,低档产品多,致使经济效益差,利用率低,矿产未被科学合理地利用,更谈不上综合开发利用和利用废渣、废水了。
(2)由于上述原因,河南省不少非金属矿产有用的共生伴生矿产得不到开发利用,如豫北粘土矿具有十几个品级,开时只其中较高的几种,其他完全丢掉,出后只作耐火材料用,而在造纸、橡胶等行业作为填料均未利用。荥阳大理石丰富,其中质量好的墨玉大理石作为水泥灰岩开,作为饰面石材高达100元/m3,而碎成石子仅以6元/t出售。一些熔剂灰岩、化工灰岩、饲料灰岩及轻质碳酸钙灰岩没有分别按用途开发利用,大大降低了利用率和经济效益。又如石炭系中统本溪组的铝土矿、耐火粘土、硫铁矿、煤、高岭土等共生,未能综合开发利用,把硬质粘土甚至作为废石扔掉。
(3)应用信息不灵,科技水平不高是河南省的非金属矿产综合利用深层次的问题。如沸石矿是优质水泥原料,但也是高效益畜牧饲料添加剂,优良的土壤改良和净化环境的除臭剂及净化剂,还可加工成分子筛系列产品,在石油、化工、轻工行业推广应用,但由于研究不够,未能进一步加工利用。
3.河南省非金属矿产综合利用方向
1)引进先进技术,搞好科学研究,生产高附加值的非金属矿产品和深加工产品,不断探索非金属矿应用新领域
(1)加强对选矿、煅烧等初加工方面的研究,提高回收率和提高初级产品质量 ①河南省蓝晶石类矿物矿产(蓝晶石、红柱石、硅线石)的选矿方法研究,提高回收率和提高精矿质量。②金红石在河南省有较大储量,只是选矿不过关,未能大规模开发利用。因此,对河南省金红石矿选矿的研究尤为重要。③研究石墨提纯方法,生产中、高碳石墨,并在提纯过程中注意保护石墨鳞片,提高石墨产品的价值。④耐火粘土开发利用要推广和改造直径大于3m,进出料口高差10m的大型煅烧竖窑,建成100m3以上的倒焰窑或0.3m乘60m回转窑提高熟料的质量和档次,提高效益。⑤改造现有的珍珠岩膨胀炉或引进新型膨胀炉生产各种粒级的玻壳珍珠岩微珠,使其适合制造各种颜色的高档轻质建筑板材原料。
(2)搞好深加工,探讨非金属矿开发应用新领域 河南省现在对非金属矿产的开发利用还是以卖原矿和初级产品为主,如何加长开发链条,向深层次发展,提高附加值,获得更高的经济效益是综合利用的一个重要方面。
A.河南省膨润土主要是钙基膨润土,而钠基膨润土的物理性质优于钙基膨润土,具有更高的经济价值和使用价值。因而,加强研究和发展钙基膨润土的提纯改型工艺,生产高质量钠基土。进一步发展加工应用于化工产品的活性白土和有机膨润土系列产品,长效复合保墒肥料的添加剂,农药载体和饲料搀和剂等产品。
B.河南省珍珠岩主要加工成珍珠岩砂,也有一些深加工制造建筑保温材料的企业,但总的来说深加工远远不够。目前建筑保温材料仍是占产品的主导地位,新产品如水泥珍珠岩板、复合墙体保温板、高强度珍珠岩板、坚头壳水泥珍珠岩复合墙体保温板、代木珍珠岩板等不断出现。尤其是憎水珍珠岩制品作为含水的密度调节剂引起了工业的又一次革命。另外,珍珠岩尾矿还可制轻质水泥,代替石英砂作为玻璃和水玻璃原料可节约纯碱降低成本;将珍珠岩熔制成泡沫玻璃,做铁水保温渣覆盖剂;用于饮料、食品、药物和化工液体的珍珠岩过滤剂在我国研制成功投入生产;用珍珠岩尾矿焙烧后的微粉作动物饲料、农药和土壤肥料的调节剂也在研究开发,以上应用领域为河南省珍珠岩开发利用提供了方向。
C.蓝晶石类矿产除提高选矿技术外,应向高档耐火材料产品发展,尤其是向不定型耐火材料新技术产品方向开展研究和加工生产,产品用于各种高温设备和工业窑炉。现在国际上还在研究蓝晶石类矿物的新用途,值得我们重视。如利用超纯蓝晶石生产高强度轻质合金——铝硅合金,用来制造汽车、火车、飞机和船舰部件等。
D.河南省石墨加工企业已有一定规模,主要产品有耐火材料、石墨电极、密封材料等。其中镁碳砖和石墨电极产品在国内处于领先水平。但企业规模小,力量分散,生产设备落后,技术力量薄弱,产品档次低且单一。河南省石墨加工企业今后应扩大企业规模,根据客户要求,开发生产各种特定规格的石墨产品,形成多品种多规格的产品结构。提高深加工技术,生产高档产品,如彩电玻壳用石墨乳、机电设备需要的石墨密封材料及核反应堆需要的超纯石墨产品等。
E.安阳霞石正长岩已完成了选矿中试,产品送杭州玻璃厂完成应用试验,为未来发展看安阳霞石正长岩除应用于玻璃工业外还应扩大应用范围,开拓其他领域。如利用烧结法和水化学法处理霞石正长岩获得氧化铝、钾碱、钠碱和高标号水泥产品,也可在油漆、塑料、橡胶、涂料行业作填料。在放射性废物处理方面也有广泛用途,这些方面都有待于研究探讨。
F.河南省煤系地层赋存有大量高岭土矿,以前开发多应用于陶瓷和耐火材料工业。由于含铁多超过标准,用于造纸工业的不多。由于对煤系高岭土研究较少,对其他领域的应用没真正有效地开展,如在橡胶、塑料、油漆等行业作填料,作为制白水泥的粘合剂、增白剂和充填料,应用于石油、化工行业、农业和其他领域等。加强对煤系高岭土的开发利用研究应是河南省非金属矿发展的重要方面。
2)对非金属矿床伴生矿产综合回收,充分利用尾矿和废渣,充分利用,保护人类环境
这个问题在河南省尚未引起足够的重视。下面以实例说明矿产综合利用带来的显著经济效益和社会效益。
(1)蓝晶石类矿物在河南省产于变质岩中,伴生变质矿物也比较多。近年来,我国在蓝晶石类矿物的综合利用方面做了大量的研究工作,特别是对于伴生矿物的回收和综合利用的研究也有很大的进展。
河北省平山县罗圈硅线石矿用先磁选后浮选工艺流程,对该地区硅线石矿石磁选,使其含铁矿物主要集中在磁铁精矿中。仅有少量泥化的含铁氧化物及连生体进入非磁性产物,既能保证除铁效果又能使含铁矿物流向集中,有利于铁精矿的综合回收。摇床回收铁矿物,铁精矿产率6.56%,铁品位56.15%,铁回收率76.36%,磁选作业非磁性矿物浮选硅线石,精矿产率24.88%,硅线石回收率81.75%。硅线石尾矿用旋流器脱泥,可综合回收白云石精矿、石英精矿、云母精矿等。
黑龙江鸡西硅线石矿床选矿副产品率分别为磁性产品4.02%,石墨2.00%、尾矿45.00%,矿泥33.05%,有工业价值并能综合回收利用的有石墨、石榴子石、钛铁矿等。磁性产品中分出硬度大于7的石榴子石可做磨料。石墨主要作保护渣,部分隐晶质石墨还可制成含固定碳大于85%的石墨精粉,尾矿中含二氧化硫82.5%、三氧化二铝9.2%、一氧化钾5.2%,氧化钠0.45%,可用做生产加气混凝土砌砖的原料,还可做民用陶瓷的原料。矿泥制成地面砖和外墙砖,其颜色、强度、抗冻性、耐温度急变和成形性能等均属良好,具有“紫砂泥”特色,可仿造各种器皿。
(2)低品位膨润土矿和尾矿的处理与利用。膨润土深加工多以提纯土为原料,但无论干法或湿法提纯土均伴有大量尾矿产生。浙江大学硅酸盐研究所应用粉碎机械化学作用提高了低品位膨润土或提纯后尾矿的表面化学活性,通过控制细粉碎和表面改性处理方法以改善其作为冶金球团粘结剂的工艺性能,取得了可喜的成果。实验结果表明,合理控制细粉碎可有效改善膨润土尾矿和低品位膨润土的表面物理化学性能,大幅度提高其膨胀容、胶质价、温压强度、热湿拉强度以及吸蓝量和阳离子交换容量,使其作为铸造用的工艺技术性能提高一个等级,达到提纯土二级品标准,同时改善作为冶金球团粘结剂的工艺技术性能。
(3)珍珠岩尾矿和膨胀珍珠岩微细粉的综合利用。珍珠岩尾矿的利用在河南省信阳地区已取得了一些经验。信阳上天梯珍珠岩矿在矿石破碎过程中产生30%~40%的-0.175mm的过细尾矿,其中99%是酸性玻璃,少量长石、磁铁矿、黑云母和蒙脱石,化学成分以二氧化硅(71.98%)和三氧化二铝(2.02%)为主。可利用这种粉矿代替价格较高的氟硅酸钠生产玻璃马赛克,其方法是用压延压铸法,工艺流程为原材料配比称重—搅拌—高温(1200~1400℃)窑炉熔融—成型—玻璃小块—烘干—成品。其中适量加入硝酸钠及少量氟化物,其他配料有高岭土、石英粉、石灰石粉、玻璃碎粉等,严格限制氧化铁加入。这种方法生产出的玻璃马赛克产品各种物化指标如热稳定性、耐酸碱腐蚀、吸水率、容重、力学性能等均符合OB和GB的指标。自20世纪80年代投入生产后每年可消耗600~800t珍珠岩废砂,产品具有轻质、坚固、耐风雨侵蚀、不吸灰、防水耐磨、色泽丰富、美观艳丽、不变色等优点。
珍珠岩在矿石加工中会产生微细粉,在煅烧膨胀过程中也会因珍珠岩炸裂而形成膨胀珍珠岩细粒。这些细粒的存在会影响膨胀珍珠岩制品的保温绝热性能。虽然颗粒较细的膨胀珍珠岩可用做助滤剂,但颗粒过细也会使其过滤速度大大降低。因此,国外研究出将粉料集结成块,使其成为合格助滤剂的工艺。如,将1~30mm的粉料与约3.5%的硼酸混合,204℃加热5min形成集块状珍珠岩过滤剂,过滤性为100%,湿饼容重为227kg/m3。
(4)石墨尾矿的综合利用。我国隐晶质石墨丰富,主要分布在湖南和吉林两省,陕西、广东、北京和福建等地也有产生。河南省也有一部分隐晶质石墨矿床。隐晶质石墨矿石选矿产品难于达到品位80%以上的要求,利用率低。黑龙江柳屯石墨矿同钢厂联合开发用尾矿生产低碳石墨保护渣,于1964年研制成功。低碳石墨保护渣为减少生产过程中粉尘污染和解决粉状保护渣对部分钢种有比较严重的增碳而降低钢锭质量的问题。19年又研制成功颗粒保护渣,该产品为球形,粒度为1~4mm,生产过程为:尾矿砂烘干、配料磨细、沥青—混合—成型—冷却—包装—储运—外销。目前,低碳石墨保护渣已发展到连铸、发热、保温、沸腾和等五个渣系计100多个规格。
低碳石墨还可在氧化铝生产中应用。烧结法生产氧化铝时,在生料中搀入20%的低品位(含碳55%~70%)的隐晶质石墨,成为氧化铝生产中的最佳脱硫剂,工业试验证明,用石墨代替部分无烟煤做氧化铝生料脱硫剂,技术上可行,经济上合算,赤泥排硫率可提高40%。
晶质石墨矿床中常见伴生有金红石等矿物,国内已有一些石墨矿从尾矿中回收金红石和含钒白云母获得好的效益和经济效益。河南省也有一些晶质石墨矿床,应加强从尾矿中回收有用矿物的研究。
数控车车刀,车什么材料用什么材料的车刀 越具体越好
这个靠你在工厂实践中慢慢积累经验。刀具使用都需要灵活运用!而且光数控车刀就几十种。工件加工形态又千变万化。这些都要靠你慢慢实践中去摸索!我大概的说几个常用的!车钢件毛刀一般用T9015牌号的刀头,表面镀钛的。强度比较大,也可以精车,但是精度太高的工件尺寸控制不是太好,光洁度在1.6-0.8之间!车钢件精车一般用NS530的陶瓷刀头,有两种,市场常见的是带切削槽的,强度小,加工余量不能太多,光洁度能到0.8;另一种不带切削槽的,市场上不是太多,一般需要订货,刀尖是微翘起的,光洁度0.8以上。车有色金属,铜,铝,易切削钢,用金刚石刀,光洁度能到0.4车淬火工件,用立方氮化绷刀头。不锈钢和铸铁也都有各自的刀头,用的不是太多,不记得牌号!这些其实很好选择,你只要购买刀具的时候跟刀具商说清楚,他们会为你选择刀具。但是千万别买国产刀具。一般你不说清楚刀具品牌。他们会拿湖南的株洲刀头和重庆的英格刀具给你!因为这个刀具利润高!还有,刀具一定要使用R0.4和R0.2的。一般刀具商会把0.6的卖给你。因为他们卖不掉!
铝热法详细资料大全
用铝还原某些金属氧化物所释放出的化学反应热,就能完成氧化物还原反应并得到分离好的合金与炉渣,而不需从外部补充热量。
工业上常用铝热法生产钛铁、钼铁、铌铁、硼铁、钒铁、钨铁、金属铬、金属锰以及镍基、钛基、铝基等中间合金。
用铝粉为还原剂的一种金属热还原法。当铝粉与金属氧化物反应时,产生足够的热量,使还原的金属和形成的渣熔融分离而获得金属或合金。广泛用于工业生产纯金属(如锰、铬、钒等)、无碳或低碳铁合金以及金属焊接等方面。
基本介绍 中文名 :铝热法 外文名 :thermite process 用途 :金属冶炼、焊接等 优点 :设备简单、产品多、生产周期短 安全隐患 :高热反应易出现火灾、爆炸 原理 :以铝粉为还原剂进行金属热还原 简介,优点,简史,原理,减少低价氧化物在炉渣中的损失,增加反应热的方法,生产工艺,原料准备,配料,冶炼,精整,铝热还原法生产铌铁,炉外铝热还原法,电炉铝热还原法,安全, 简介 用铝粉为还原剂的金属热还原法。当铝与金属氧化物反应时,产生足够的热量,使还原的金属和形成的渣熔融分离而获得金属或合金。在生产工业纯金属(如锰、铬、钒等)、无碳或低碳铁合金和金属焊接方面获得广泛套用。 铝热法与用矽铁作还原剂的矽热法同属利用自热反应生产铁合金的方法,称金属热法,又称炉外法。它们以铝粒、矽铁粉或铝镁合金粉作还原剂。铝热法主要用来生产含有高熔点金属与难还原元素的铁合金、中间合金、铬与锰等。产品特点是含碳量极低(一般<0.05%)。 优点 铝热法生产设备简单,占地面积小,生产规模可根据任务确定,产品品种较多,生产周期短等特点。 简史 1859年俄国科学家别克托夫(H.H.BeKeTOBy)在《论若干还原现象》中提到“用铝还原氧化钡得到24%Ba和33%Ba的钡铝合金”。这是对铝热法试验的最早报告,但当时在工业上没有得到使用。 1893年戈尔德施米特(H.Goldschmidt)发现金属氧化物的粉末和粉状还原金属(基本上是铝)的混合料,点火引发反应后,就能自动继续进行,直至炉料反应完毕。 1898年戈尔德施米特在德国电化学学会上做了关于金属热还原法的报告,人们才知道铝热法在工业生产上已取得良好效果,可以经济地、大批量地生产不含碳的铁合金与纯金属。这一年应该是铝热法用于工业生产的起点。 工业上用铝热法生产的铁合金主要有:钛铁、钼铁、铌铁、硼铁、钒铁、钨铁、金属铬、金属锰以及镍基、钛基、铝基等中间合金。 中国以铝热法工业生产铁合金是从1957年底吉林铁合金厂生产钼铁开始的。 原理 铝还原氧化物的反应属置换型化学反应,并放出热量ΔH°298(反应)。用热化学反应式表示为:2/yM x O y +4/3Al =2x/y M+2/3Al 2 O 3 +ΔH° 298 (反应)反应热ΔH°298是用化学手册上的数据计算。即ΔH°298(反应)=2/3ΔH° 298 (Al 2 O 3 )-2/yΔH° 298 (MxOy)氧化物的生成标准焓ΔH° 298 ,通称标准生成热。 图1 氧化物生成△F°-T关系图 如图1 氧化物生成△F°-T关系图 铝热还原反应能否进行,可以根据氧化物的相对稳定性来判断。而氧化物的稳定性则根据氧化物生成自由能ΔF°=-kTlnpo 2 来判断。所有氧化物都随温度的升高而更易分解,从而也更易还原。各种氧化物的氧势差在高温下变小。从图1可以估计还原情况。在△F°-T图中,位置低的元素可以还原位置较高的氧化物。两条△F°-T线间的距离越大,则还原反应产生的热量愈多。铝(或矽)热还原反应的先决条件是△F°≤0,即反应自由能的负值越大,铝热还原反应就越容易进行。从△F°-T图分析铝(或矽)热还原反应时,未考虑动力学过程,所以这种判断是定性的。所有的金属热还原反应在较低温度下的△F°比较高温度下的△F°的负值大,因此在反应能够进行的条件下,将反应温度尽可能控制在比较低的水平,这样对还原反应向右进行有利。 铝热还原反应有的可以把金属全部从相关的氧化物中置换出来,如铁、钨、钼等;而有的只能进行到合金液与炉渣中的氧化物接近平衡,一部分氧化物留在炉渣中。有些氧化物在铝热还原过程中被还原成低价氧化物,如TiO 2 被还原成TiO,从酸性氧化物转变为碱性氧化物,与还原过程产生的Al 2 O 3 结合成铝酸盐而留在炉渣中,增加了钛的损失。 减少低价氧化物在炉渣中的损失 (1)是增加还原金属的加入量,在还原剂过剩的条件下避免低价氧化物产生; (2)是添加碱性氧化物如CaO、MgO、BaO即可减少炉渣中TiO、MnO等的含量,提高金属元素的回收率。碱性氧化物还可以降低炉渣的熔点和改进炉渣的流动性。碱性氧化物添加的数量应尽量少,以免增加渣量影响反应过程。 由于反应快,很难达到平衡条件。部分还原金属未被用于还原而残留在合金中,形成中间化合物如TiAl、TiAl 3 等,使合金含铝量高,而且难以获得高品位合金。为了促使反应接近平衡,有时添加第3种元素,如添加铁来吸收反应产生的金属,使反应向右进行。这种办法在生产铁合金时是可行的,还可以降低合金熔点和反应温度。要得到含铝低的产品,则可将铝的配加量稍低于计算量。图1可以为选择还原剂的种类和氧化物的类型提供参考。铁合金冶炼常用的还原剂主要是铝与矽铁,偶而也用少量镁(以镁铝合金加入)。 铝热法的反应结果必须使金属与炉渣均有良好的流动性,即被加热至它们的熔点以上,使产出的合金与炉渣清楚分离;并且能得到较高的金属收得率,才能认为是反应自动进行而被工业生产用。这一问题需要分析铝热法冶炼过程的热平衡。 在铝热还原反应过程中,反应物的还原、生成物的产生、反应热的产生、反应物(合金与炉渣)的加热等都是在同一瞬间、同一体系之中同时完成的。所以热量集中,反应速度快,时间短,热效率高。反应熔体的表面始终为加入的炉料所覆盖,所以当反应进行时,反应器热传导和热辐射所产生的热损失,对还原过程的影响较小。由于反应时间短,炉料与反应物的蒸发损失量小,所以蒸发热量也少。 铝热法的主要热源是热化学反应产生的反应热△H° 298 (反应),它可以通过计算方法求得。1914年俄国化学家热姆丘日内在“得到的金属和渣的含热量,和伴随反应过程的热损失,对各种不同的合金是近似于相同”的基础上,提出“若要铝热过程正常进行,则必须在反应中每克炉料发生的热量不少于550cal”的法则。即用单位炉料产生的热量来判断铝热还原过程能否自动进行。 热姆丘日内法则在生产上可作为参考,或在新品种研制时作初步估计时使用。其原因是对氧化物还原程度的规定不同,合金和炉渣的熔点不同,冶炼规模大小不同,矿石的相结构不同等,所以在经过配料计算得到炉料的配比后,要先用小规模冶炼设备试炼,然后再作适当调整,方可用于生产。在正常生产的工厂中当矿石变换时也需要经过试炼来修正配料单。生产上炉料的总量应包括铝、矽铁等还原剂,氧化物(或矿石)及杂质(或脉石)、熔剂等的质量和。反应热是根据手册中的生成焓(△H° 98 )数据计算。由于年代和版本的不同,存在着不同程度的差异,计算出的反应热也是不同的。实际工作者应选定一批数据,固定使用,并根据实践得出修正系数。 通过计算,如果单位炉料发热量低于550cal/g时,则铝热反应不能自动进行,需要调整配料,增加反应热。 增加反应热的方法 (1)调整氧化物中高价与低价氧化物的比例,增加氧化物中氧的总量。铝热法生产金属锰时对锰矿石引用了活性氧概念。所谓活性氧是指将锰氧化物按MnO计算后,未与Mn结合的氧。如Mn3O4的活性氧为7%,而Mn2O3则为10%。这是利用高、低价氧化物比例调整铝热还原反应发热量的例子。 (2)生产铁合金时可以添加赤铁矿(Fe 2 O 3 )或铁鳞(Fe 3 O 4 )代替部分钢屑,它们和铝或矽反应后都产生大量热。如生产镍基合金时用NiO代替部分镍。 (3)添加BaO 2 或NaClO 3 、KClO 3 、NaNO 3、 KNO 3 等与铝反应后能放出大量热的增热剂,使炉料单位发热量提高到期望值。这是常用的方法。但要注意使用NaNO 3 或KNO 3 时会使合金含氮高,和排出如氧化氮等污染环境的气体。 (4)预热炉料,提高炉料的显热。一般情况炉料预热温度每提高100℃,就可使单位发热量增加约30cal/g。 (5)向反应器内输送电能,即形成电铝热法。 单位炉料发热量过高时,会使铝热反应剧烈,甚至达到爆发程度;冶炼时喷溅严重使炉料与产物损失增加,合金与炉渣混杂而分离不清。严重时会损坏设备和危及操作人员安全。降低炉料单位发热量的有效办法是添加惰性物,增加炉料的量。常用的惰性物有合金精整产生的合金碎屑,冶炼产生的炉渣、石灰、镁砂等。此外,增大铝粒及炉料的粒度可以抑制反应的速度。 金属化合物的生成,Al 2 O 3 与其他氧化物组成复合氧化物时的成渣反应等都产生热量,但在计算炉料单位发热量时不予考虑。 生产工艺 铝热法冶炼铁合金的反应是一经触发即自动进行,无法控制,因此对炉料准备有严格要求。配料计算与称量必须准确。配好的炉料要混匀后才能装入反应炉内。炉料的粒度直接影响反应速度。粒度粗反应速度慢,粒度细则反应速度快。通过矿石或氧化物与还原金属粒度的适当配合,使热量集中以及反应速度之间达到最优配合,才能得到较高的金属收得率。例如五氧化二钒与铝的反应很剧烈,可以加大粒度来控制它们之间的反应进程。粗铝粒表面氧化物少,使铝粒含氧减少,反应中生成大的高铝合金液滴。高铝合金液滴的密度增至可使液滴下沉,下滴过程中与熔渣中的金属氧化物继续发生反应,使大部分铝被消耗掉。下沉至合金层表面的高铝合金与覆盖的炉渣中的金属氧化物,在高温下继续发生置换反应。细的铝粒表面上生成的氧化物使铝粒含氧较高,因而对还原反应不利,所以铝热法使用的铝粒粒度,小于0.1mm的数量应少于5%。如上所述铝热法冶炼铁合金的工艺可以分为原料准备、配料、冶炼、精整等4个主要工序。 原料准备 主要工作是将矿石、氧化物和熔剂(石灰、萤石)等彻底干燥,去除附着水、结晶水和挥发物(如选矿试剂)。然后加工成生产要求的粒度。所用设备均为通用设备,如回转窑、干燥炉、破碎机和球磨机等。铝粒由铁合金厂自己制造。粒度要求有规定。一般是生产后立即使用,不宜长期存放。制造铝粒的喷雾法是将铝锭加热熔化后,用压缩空气加压,从熔铝锅经喷嘴喷出时,由雾化器用压缩空气将铝流击碎而成铝粒。可以通过调整喷出压力或改换雾化器,得到所要求粒度的铝粒。另一种方法是将铝锭压延成铝箔,再经机械剪下成铝碎屑。 配料 这是铝热法生产的关键工序,不允许出任何差错,否则将产生不良后果,甚至得不到产品。配料在配料站进行。配料站主要设备有贮料仓、磅秤、混料筒和运料斗。配料前要校正磅秤。料要按规定的顺序称量。加入混料机内的炉料重量和混料时间,由混料机容量规定。小量生产可以用人工混料。减少损失的方法 如图铝热法配料站布置图 1—贮料仓;2—混料筒;3—运料斗;4—磅秤;5—萤石料箱 冶炼 铝热还原反应在反应器内进行。反应器亦称熔炼炉。反应器分固定式反应器(图5)和移动式反应器(图6)两种。图5a是上部点火冶炼用的反应器,无加料设备,放在砂基上;图5b是下部点火用的反应器,也是放在砂基上;图5c为底部砌砖的固定式反应器。3种反应器均有出渣口,冶炼反应结束后放出大部分炉渣。移动式反应器均放在移动小车上,推至烟罩下,或反应室中 a—烟罩式:1—可倾翻的铁炉壳;2—含镁砂的打结料;3—行驶车架;4—排烟罩;5—排烟罩的可翻开部分(为便于车子开入和人工装料) b—反应室式:1—料仓;2—螺旋运输机;3—水冷料管;4—砌砖的上部反应器身;5—砌砖坩埚;6—镁砂衬;7—砌砖套室; 8—旋风除尘器 由加料器或人工加料。反应器由两部分组成:上部是一个空心圆筒,外壳用钢板焊成,上下沿用角钢加固,上沿有吊环。内衬用耐火砖、镁砖或高铝砖砌成,也可以用生产的炉渣破碎后打结,还可以用液态炉渣浇铸,也可以用铸铁铸成片块拼装,不用砌耐火材料内衬。底部是用石英砂(仅矽热法用)、镁砂或镁砖筑成的坩埚,盛反应产生的合金。 冶炼操作按引火方式分为两种,即上部点火法与下部点火法。 a—上部点火反应器:1—炉壳;2—粘土砖衬;3—渣口;4—砂基;5—炉料;6—引火剂;7—烟罩 b—下部点火反应器:1—砂基(镁砂);2—炉筒;3—炉罩;4—烟罩;5—料仓;6—溜槽;7—底料;8—引火剂;9—加入炉料 c—砖砌坩埚反应器:1—镁砖层;2—用镁砖砌的坩埚;3—打结料;4—镁砂;5—起吊用轴耳;6—烟罩;7—人工加料用闸板 上部点火法 是将配料站混合好的炉料全部装入反应器内。然后在炉料上部置引火剂,引火剂点着后熔炼反应即开始。待全部炉料反应完毕,经镇静后放出炉渣。合金冷凝后再取出冷却。工业生产中冶炼钼铁就是用上部点火法。生产批量小的铁合金也多用这种方法。 下部点火法 冶炼是在反应器底部先加入部分混合好的炉料,在炉料层上部加入引火剂引发反应后,再陆续从上部料仓加入混合炉料。加料速度以使熔融物表面有一薄层炉料,而且反应稳定继续进行为准。也可以用人工加料。下部点火法比上部点火法能充分利用熔炼炉体积,节约耐火材料。工业生产中大都用下部点火法。冶炼某些铁合金在反应结束后还要加入精炼料。精炼料是由铁矿粉与铝粉、矽铁粉组成,能放出大量热,在一定时间内将炉渣保持在熔融状态,有利于混杂在炉渣中的合金粒下沉;精炼剂的反应产物为铁滴,铁滴在穿过熔渣层下降时可以吸附渣层中的“金属雾”使之凝聚成较大的液滴而下沉,这样可以提高金属元素的收得率。 有一种固定式反应器,设有合金排放孔,和出渣口,反应结束后先从出渣口放出炉渣,再从合金排放口放出合金。这种反应器可以节约耐火材料和提高热效率。当然这仅用于大规模生产熔点较低的合金。(见铌铁) 铝热法冶炼贵重金属铁合金时,炉渣中往往残存一定数量的金属,可用电炉重熔回收。铝热法产生的炉渣含三氧化二铝高,是有用的耐火材料和研磨材料。Al 2 O 3 >90%的炉渣就可以作为制高铝砖的原料。 精整 冶炼得到的合金锭在空气中冷却至凝固后,从坩埚内吊出。送进冷却室喷水急冷,使合金锭产生裂纹,以便破碎。水冷后的合金锭送至喷丸室,清除表面附着的炉渣和耐火材料。有的元素在合金锭中偏析较大,要按规定的取样方法集化学分析试样。合金锭破碎至规定块度后包装出售。 铝热还原法生产铌铁 以金属铝还原铌精矿或氧化铌生产铌铁中间合金的过程。铌熔点高,还原困难,但如有铁存在,被还原的铌与铁生成合金,不仅容易还原,而且由于铌铁的熔点比铌低,更适于作炼钢或高温合金的添加剂。生产铌铁一般使用纯Nb 2 O 5 和铌精矿两种原料。以纯Nb 2 O 5 为原料生产的铌铁杂质含量少、纯度高,称为高级铌铁,主要用于炼制高温合金等。以铌精矿为原料生产的铌铁称为标准级铌铁,含铌60%~65%,主要用作炼钢的添加剂。根据合金中的铌含量又可将铌铁分为高品位铌铁(Nb>65%)、中品位铌铁(Nb约50%)和低品位铌铁(Nb<30%)。根据还原熔炼使用的设备可分为炉外铝热还原法和电炉铝热还原法。 炉外铝热还原法 在无外加热的炉内实现还原熔炼反应的过程。反应完毕后,拆开熔炼炉,取出反应产物,将合金和渣在炉外分离。炉外铝热还原法的特点是在熔炼过程中不从熔炼炉中放出液态反应产物,因此过程比较简单,一般用建造费用少、可拆卸的圆筒熔炼炉。炉外铝热还原法由于反应生成的液态金属和渣在同一反应器中进行凝固结晶,而两种产物的最佳凝固结晶条件是不一样的,因而存在不易获得高的技术经济指标,原材料和耐火材料消耗大,间歇操作,砌炉、拆炉和清除合金中混杂的熔渣和耐火材料的劳动强度大等问题。为此,已开发出一种可以分别放出液态金属或熔渣的倾斜式熔炼炉。 炉外铝热还原法只适用于处理杂质含量低的铌精矿或氧化铌,尤其要严格限制原料中有害杂质磷、硫、铅、砷、锑、锡、铋的含量。为确保还原反应完全,原料和还原剂铝均需磨至细的粒度并混合均匀,使物料之间有最大的还原反应接触面积。物料只有经过充分混匀才能获得高的还原反应速度和高的铌回收率。还原剂铝粉的用量除保证铌和铁的还原外,还应计算杂质还原所消耗的铝,一般为理论量的110%。铝粉用量过多不仅不能提高铌的回收率,还导致反应过分激烈,使铌中残留的铝含量增加。用铁精矿作添加剂时,其矽、磷含量要少。根据对铌铁纯度的要求,常使用铁屑或电解铁粉添加剂。铁的加入量以使合金接近Fe2Nb的低共熔点为宜。用纯Nb 2 O 5 原料时,铁用量以氧化铌质量的30%~40%为宜。降低炉渣的粘度可使合金和炉渣易于分离。通常在熔炼过程中加入熟石灰、氧化钡、氧化镁、萤石等助熔剂来降低炉渣的粘度。助熔剂的加入量必须适中,如加入的熟石灰过量太多,则易生成铌酸钙,使铌的损失增大;助熔剂过多还会侵蚀炉衬耐火材料。此外,为了补充热量,有时还需加入发热剂如氯酸钠等。引发反应常用的强氧化剂有氯酸盐、硝石和镁粉等,也可用电容丝点火。物料必须预先干燥,反应器和砂窝要保持干燥,以防爆炸。 电炉铝热还原法 铝热还原过程中用电能补偿加热的生产方法。这种方法能较易控制还原反应的速度,可获得较高质量的产品,并节省铝粉,技术经济指标亦较炉外铝热还原法高。电炉铝热还原法生产铌铁有一段法和二段法充分。一段法是物料在电弧作用下一次完成还原反应,产出铌铁。二段法是先用电弧炉熔化物料,然后进行铝热还原熔炼。为使电极深插合适和保持炉况稳定,必须严格控制炉膛电阻。炉膛电阻受炉料组成、铝粉粒度和数量、炉渣化学成分、炉膛尺寸和电极间距、炉内温度分布等因素的影响。中国一些工厂以铌铁矿为原料,用三相电弧炉生产中、高品位铌铁,冶炼温度13~2073K,氧化铌回收率96%,氧化钽回收率83%,铌铁中的铌含量为50%~70%。 安全 铝热还原是自动反应,因此要特别注意安全问题,以免引起火灾、爆炸、烧伤等事故。炉料的存放要分开,铝粒与发热剂及氧化物粉不能堆放在一起。混合好的冶炼炉料要立即熔炼不可存放。混料场地不能潮湿和有积水,以免不慎引起混料的炉料反应,造成爆炸事故。冶炼过程中操作人员要位于安全地带,同时穿好劳动防护用品,以免烧伤。要及时清理现场,不让有粉尘存在,以免引起着火事故。点火时要注意安全。熔炼时要启动通风系统,及时将烟尘废气排出,以免污染工作环境。[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。